Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## An interplay between spatially separated Fermi and Bose subsystems and superconductivity in perovskite-like oxides* A.P.Menushenkov¹, K.V.Klementev¹, A.V.Kuznetsov¹, M.Yu.Kagan² - ¹ Moscow State Engineering Physics Institute, Kashirskoe shosse 31, 115409 Moscow, Russia - ² P.L.Kapitza Institute for Physical Problems, Kosygin Street 2, 117334 Moscow, Russia A new scenario for the insulator-metal phase transition and the superconductivity in the perovskite-like bismuthates $Ba_{1-x}K_xBiO_3$ (BKBO) based on our EXAFS - studies is proposed. We have shown that two types of the charge carriers: the local pairs (real-space bosons) and the itinerant electrons exist in the metallic $Ba_{1-x}K_xBiO_3$ ($x \ge 0.37$). The real-space bosons are responsible for both the charge transport in the semiconducting $BaBiO_3$ and the superconductivity in the metallic BKBO. The appearing of the Fermiliquid state at the percolation threshold overcoming ($x \ge 0.37$) explains the observed insulator-metal phase transition. Bosons and fermions occupy different types of the octahedral BiO_6 complexes, so they are separated in real space and a new type of spatially separated Fermi-Bose mixture is likely to be realized in bismuthates. A new superconducting oxide $Ba_{1-x}La_xPbO_3$ has been successfully synthesized to check our conclusions. The likeness of the local peculiarities of BiO_6 and CuO_n complexes observed by us for $Nd_{2-x}Ce_xCuO_4$ compounds allows one to discuss the applicability of this scenario for the high- T_c cuprates. $^{^*}$ This work was supported by Russian Foundation for Basic Research (Grant No. 99-02-17343), and Program "Superconductivity" (Grant No. 99010)